内蒙古开鲁县高中数学第三章不等式3.3.1二元一次不等式(组)与平面区域教案1新人教A版必修5


3.3.1 二元一次不等式(组)与平面区域(1) 了解二元一次不等式的几何意义,会用二元一次不等式组表示 知识目标 平面区域。 经历从实际情境中抽象出二元一次不 等式组的过程,提高数学 能力目标 建模的能力。 情感目标 高 考知识 点 扫描 教学重点 教学难点 教学方法 教具 用二元一次不等式(组)表示平面区域。 用二元一次不等式(组)表示平面区域。 启发式教学,问题引领,自主学习 多媒体课件 教 教学内容 一.复习旧知: 二元一次不等式和二元一次不等式组的定义 (1)二元一次不等式:含有两个未知数,并且未知数的最高次数 是 1 的不等式叫做二元一次不等式。 (2)二元一次不等式组:有几个二元一次不等式组成的不等式组 一.二元一次不等式 和二元一次不等式组 称为二元一次不等式组。 (3)二元一次不等式(组)的解集:满足二元一次不等式(组) 的 x 和 y 的取值构成有序实数对(x,y) ,所有这样的有序实数对 (x,y)构成的集合称为二元一次不等式(组)的解集。 (4)二元一次不等式(组)的解集与平面直角坐标系内的点之间 的关系: 二元一次不等式(组)的解集是有序实数对,而点的坐标也 是有序实数对,因此,有序实数对就可以看成是平面内点的坐标, 进而,二元一次不等式(组)的解集就可以看成是直角坐标系内 的点构成的集合。 1 教 学 目 标 通过本节课的学习, 体会数学来源与生活, 提高数学学习兴趣。 会用二元一次不等式组表示平面区域。 第 学 设 教学过程 计 1 课时 二.探究新知: 探究二元一次不等式(组)的解集表 示的图形 (1)回忆、思考 回忆:初中一元一次不等式(组)的解集所表示的图形——数轴 上的区间 思考:在直角坐标系内,二元一次不等式(组)的解集表示什么 图形? (2)探究 从特殊到一般: 先研究具体的二元一次不等式 x-y<6 的解集 二.二元一次不等式 (组)的解集表示的 图形 所表示的图形。 如图:在平面直角坐标系内,x-y=6 表示一 条直线。平面内所有的点被直线分成三类: 第一类:在直线 x-y=6 上的点; 第二类:在直线 x-y=6 左上方的区域内的点; 第三类:在直线 x-y=6 右下方的区域内的点。 设点是直线 x-y=6 上的点,选取点,使它的坐标 满足不等式 x-y<6, 请同学们完成课本第 93 页的 表格,并思考: 当点 A 与点 P 有相同的横坐标时,它们的纵坐标有什么关系? 据此,直线 x-y=6 左上方的坐标与不等式 x-y<6 有什么关系? 直线 x-y=6 右下方点的坐标呢? 学生思考、讨论、交流,达成共识: 在平面直角坐标系中,以二元一次不等式 x-y<6 的解为坐标的点都在直线 x-y=6 的左上方; 反过 来, 直线 x-y=6 左上方的点的坐标都满足不等式 x-y<6 。因此,在平面直角坐标系中,不等式 x-y<6 表示直线 x-y=6 左上方的平面区域;如图。 类似的:二元一次不等式 x-y>6 表示直线 x -y=6 右下方的区域; 直线叫做这两个区域的边界 2 由特殊例子推广到一般情况: (3)结论: 二元一次不等式 Ax+By+C>0 在平面直角坐标系中表示直线 Ax+By+C=0 某一侧所有点组成的平面区域.(虚线表示区域不包括 边界直线) 4.二元一次不等式表示哪个平面区域的判断方法 由于对在直线 Ax+By+C=0 同一 侧的所有点( x, y ),把它的坐 标( x, y )代入 Ax+By+C,所得到实数的符号都相同,所以只需在 此直线的某一侧取一特殊点(x0,y0),从 Ax0+By0+C 的正负即可判 断 Ax+By+C>0 表示直线哪一侧的平面区域. (特殊地, 当 C≠0 时, 常把原点作为此特殊点) 三.应用举例 例 1 画出不等式 x ? 4 y ? 4 表示的平面区域。 解: (略) 归纳:画二元一次不等式表 示的平面区域常采用“直线定界,特 殊点定域”的方法。特殊地当 C ? 0 时,常把原点作为此特殊点。 变式 1、画出不等式 4 x ? 3 y ? 12 所表示的平面区域。 变式 2、画出不等式 x ? 1 所表示的平面区域。 例 2 用平面区域表示.不等式组 ? ? y ? ?3x ? 12 的解集。 ?x ? 2 y 分析:不等式组表示的平面区域是各个不等式所表示的平面点集 的交集,因而是各个不等式所表示的平面区域的公共部分。 解: (略) 归纳:不等式组表示的平面区域是各个不等式所表示的平面点集 的交集,因而是各个不等式所表示的平面区域的公共部分。 ? 0 表示的平面区域。 变式 1、画出不等式 ( x ? 2 y ? 1)(x ? y ? 4) 变式 2、 由直线 x ? y ? 2 ? 0 ,x ? 2 y ? 1 ? 0 和 2 x ? y ? 1 ? 0 围 成 的 三 角 形 区 域 ( 包 括 边 界 ) 用 不 等 式 可 表 示 3 为 。 四.随堂练习:课本第 97 页的练习 1、2、3 五.高考链接: (2009·安徽)点(3,1)和(-4,6)在直线 3x-2y+a=0 的两侧, 则 a 的取值范围是 ( A.a<-7 或 a>24 C.a=-7 或 a=24 ) B.-7<a<24 D.以上都不对 六课时小结:学生归纳总结,教师补充指导 七.布置作业:习题 3.3A 组第 1 题 3.3.1 二元一次不等式(组)与平面区域 一.二元一次不等式和二元一次不等式组的定义 板书设计 二.二元一次不等式(组)的解集表示的图形 例1例2 学生归纳总结: 1.二元一次不等式表示的平面区域. 课堂小结 2.二元一次不等式表示哪个平面区域的判断方法. 3.二元一次不等式组表示的平面区域. 1.课本第 97 页的练习 1、2、3 2.高考链接: (2009·安徽)点(3,1)和(-4,6)在直线 3x-2y+a=0 的两侧, 课堂训练 则 a 的取值范围是 ( A.

相关文档

内蒙古开鲁县高中数学第三章不等式3.3.1二元一次不等式(组)与平面区域教案2新人教A版必修5
内蒙古开鲁县高中数学第三章不等式331二元一次不等式组与平面区域教案1新人教A版必修5(数学教案)
内蒙古开鲁县高中数学第三章不等式331二元一次不等式组与平面区域教案2新人教A版必修5(数学教案)
高中数学 第三章不等式 二元一次不等式(组)与平面区域教案 学生版1 新人教A版必修5
高中数学 第三章不等式 二元一次不等式(组)与平面区域教案 教师版1 新人教A版必修5
高中数学 第三章不等式 二元一次不等式(组)与平面区域教案 学生版2 新人教A版必修5
高中数学 第三章不等式 二元一次不等式(组)与平面区域教案 教师版2 新人教A版必修5
高中数学 (3.3.1 二元一次不等式(组)与平面区域)示范教案 新人教A版必修5
内蒙古赤峰二中高中数学 3.3.1二元一次不等式与平面区域(2)教案 新人教B版必修5
高中数学第三章不等式二元一次不等式(组)与平面区域教案教师版2新人教A版必修5
电脑版