安徽省郎溪中学2018_2019学年高二数学上学期期中试题文


发顺丰的故事

安徽省郎溪中学 2018-2019 学年高二数学上学期期中试题 文
时间:120 分钟 分值:150 分 一、选择题(每小题 5 分,共 60 分,每小题的四个选项中,只有一项是符合题目要求的) 1、设 x ? R ,则“ x3 ? 8 ”是“ |x |? 2 ” 的 ( )

(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件 2、若某群体中的成员支付的方式只有三种:现金支付;微信支付;信用卡支付。用现金支付 的概率为 0.45,微信支付的概率为 0.15,则信用卡支付的概率为( (A)0.3 (B)0.4 (C)0.6 )

(D)0.7 ,且 y 与 x 线性相关,线性回归

3、已知 x , y 的取值如右表:
? ? 0.95 x ? a ? ,则 a ??( 直线方程为 y

) (C) 2.9 ) (D) 1.95

(A) 2.6
2

(B) 3.35
2

4、方程(x-y) +(xy-1) =0 表示的图形是(

(A)一条直线和一条双曲线(B)两条双曲线(C)两个点(D)以上答案都不对 5、阅读如图所示的程序框图,运行相应的程序,若输入 N 的值为 20,则输出 T 的值为( )

(A)1

(B)2

(C)3

(D)4

6、设 a,b,c,d 是非零实数,则“ad=bc”是“a,b,c,d 成等比数列”的( ) (A)充分不必要条件 (B)必要不充分条件(C)充要条件(D)既不充分也不必要条件 7、 若 A 与 B 为互斥事件,则( (A) P ? A? ? P ? B ? ? 1 ) ( B) P ? A? ? P ? B ? ? 1
回家和规范化风格化

发顺丰的故事

(C) P? A? ? P?B ? ? 1
1 1 1 8、为计算 S ? 1 ? ? ? ? 2 3 4 ?

( D) P? A? ? P?B ? ? 1
1 1 ? ,设计了如图的程序框图,则在空白框中应填入 99 100
开始 N ? 0, T ? 0 i ?1 是 1 i i ? 100 否

N?N? T ?T ?

S ? N ?T 输出 S 结束

1 i ?1

(A) i ? i ? 1

(B) i ? i ? 2

(C) i ? i ? 3

(D) i ? i ? 4

9、如图,长方形的长度为 4cm ,宽度为 2cm ,向这个长方形投一块小石头落在阴影部分的 概率( (A) )。

?
2

(B)

?
4

(C)

?
8

(D)

1 2

10、已知 ?ABC 的顶点 B、C 在 椭圆

x y2 ? ? 1 上,顶点 A 是椭圆的一个焦点,且椭圆 16 9
) 16 (D) 24

的另一个焦点在线段 BC 上,则 ?ABC 的周长是( (A) 8 (B)

8 3

(C)

11、已知直线 y ? x ?

1 y2 x2 与坐标轴的一个交点与椭圆 ? ? 1 的一个焦点重合,则 m=( ) 2 m 2
(B)

(A)

7 4

7 9 或 4 4

(C)

9 4

( D)

127 129 或 64 64

12、已知 O 为坐标原点,F 是椭圆 C:

x2 y 2 ? ? 1(a ? b ? 0) 的左焦点,A,B 分别为 C 的左, a 2 b2

右顶点.P 为 C 上一点,且 PF⊥x 轴.过点 A 的直线 l 与线段 PF 交于点 M,与 y 轴交于点 E.若 直线 BM 经过 OE 的中点,则 C 的离心率为( ) (A)

1 3

(B)

1 2

(C)

2 3

(D)

3 4

二、填空题(每小题 5 分,共 20 分)
回家和规范化风格化

发顺丰的故事

13、若六进制数 1m05(6)(m 为正整数)化为十进制数为 293,则 m= 14、命题“ ? : x ? R, x ? 2 ? x ? 4 ? 3 ”的否定是 ________ 15、总体由编号为 01,02,

. .

,29,30 的 30 个个体组成.利用下面的随机数表选取样本,

选取方法是从随机数表第 2 行的第 6 列数字开始由左到右依次选取两个数字, 则选出来的第 3 个个体的编号为_______. 5416 3567 6725 8237 1842 5932 5338 1150 1703 4723 4259 4079 7922 7814 3148 7181

16、. 若直线 l : 2 x ? y ? 1 ? 0 与曲线 C 交于 A ? x1 , y1 ? , B ? x2 , y2 ? 两点,若 AB ? 10 ,则

y1 ? y2 =_______.
三、解答题(共 70 分,解答应写出必要的文字说明,证明过程或演算步骤)

x ? 4 ? 6, 17、(本小题满分 10 分) 已知 p: q:x 2 ? 3x ? 0 ,若命题“ p 且 q”和“?p”都
为假,求 x 的取值范围.

18、(本小题满分 12 分)某零售店近 5 个月的销售额和利润额资料如下表所示: 月份(字母表示) 销售额 x/千万元 利润额 y/百万元

A
3 2

B
5 3

C
6 3

D
7 4

E
9 5

(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系; (2)用最小二乘法计算利润额 y 关于销售额 x 的回归直线方程; (3)当销售额为 4 千万元时,利用(2)的结论估计该零售店的利润额(百万元). 附:利用“最小二乘法”计算 a,b 的值时,可根据以下公式:
n n ?? xi ? x ?? yi ? y ? ? i ?1xi yi ? nxy ? ? i ? 1 ?b ? ? n n 2 ? x ? x ? ? ? ? i?1 i ? i?1xi 2 ? nx 2 ?? ? ? a ? y ? b x ?

19、(本小题满分 12 分)已知直角坐标平面上一点 Q(2,0)和圆 C:x2+y2=1,动点 M 到圆 O 的切线长等于圆 C 的半径与 MQ 的和,求动点 M 的轨迹方程.

回家和规范化风格化

发顺丰的故事

x2 y 2 20、(本小题满分 12 分)设椭圆 2 ? 2 ? 1(a ? b ? 0) 的右顶点为 A,上顶点为 B.已知椭 a b
圆的离心率为

5 , | AB |? 13 . 3

(I)求椭圆的方程; (II)设直线 l : y ? kx(k ? 0) 与椭圆交于 P, Q 两点,l 与直线 AB 交于点 M,且 点 P,M 均在第四象限.若 △BPM 的面积是 △BPQ 面积的 2 倍,求 k 的值.

21、(本小题满分 12 分)某高级中学今年高一年级招收“国际班”学生 720 人,学校为这些 学生开辟了直升海外一流大学的绿色通道,为了逐步提高这些学生与国际教育接轨的能力, 将这 720 人分为三个批次参加国际教育研修培训,在这三个批次的学生中男、女学生人数如 下表: 第一批次 女 男
m

第二批次
n

第三批次 72
k

180

132

已知在这 720 名学生中随机抽取 1 名,抽到第一批次、第二批次中女学生的概率分别是
0.25 , 0.15 .

(1)求 m , n , k 的值; (2)为了检验研修的效果,现从三个批次中按分层抽样的方法抽取 6 名同学问卷调查,则三 个批次被选取的人数分别是多少? (3)若从第(2)问选取的学生中随机选出两名学生进行访谈,求“参加访谈的两名同学至 少有一个人来自第一批次”的概率.

回家和规范化风格化

发顺丰的故事

22.(本小题满分 12 分)如图,在平面直角坐标系 xOy 中,椭圆

1 C 过点 ( 3, ) ,焦点 F1 (? 3,0), F2 ( 3,0) ,圆 O 的直径为 F1 F2 . 2
(1)求椭圆 C 及圆 O 的方程; (2)设直线 l 与圆 O 相切于第一象限内的点 P.若直线 l 与 椭圆 C 有且只有一个公共点,求点 P 的坐标;

(第 22 题)

回家和规范化风格化

发顺丰的故事

郎溪中学 2018~2019 学年第一学期期中考试答案(文科) 一、选择题(合计 60 分) 题号 答案 1 A 2 B 3 A 4 C 5 B 6 B 7 D 8 B 9 C 10 C 11 B 12 A

二、填空题(合计 20 分) 13、2 14、 ? : x0 ? R, x0 ? 2 ? x0 ? 4 ? 3 15、15 16、 2 2

三、解答题(第 17 题 10 分,其余每题都是 12 分) 17. 解:由p : x ? 4 ? 6,解得- 2 ? x ? 10

由q : x 2 ? 3x ? 0,解得 x ? ?3, 或x ? 0 .
因为命题“ p 且 q”和“?p”都为假,所以 p为真q为假

?- 2 ? x ? 10 ?? 解得- 2 ? x ? 0 . ?- 3 ? x ? 0

? x的取值范围为 { x | -2 ? x ? 0}.

18、解:(1)散点图如图所示,两个变量有线性相关关系.

^ ^ ^ (2)设回归直线方程是y=bx+a. - - 由题中的数据可知 y =3.4, x =6.所以

10 =20 =0.5.
回家和规范化风格化

发顺丰的故事

^ - ^- a= y -b x =3.4-0.5×6=0.4. 所以利润额 y 关于销售额 x 的回归直线方程为 ^

y=0.5x+0.4.
^ (3)由(2)知,当 x=4 时,y=0.5×4+0.4=2.4,所以当销售额为 4 千万元时,可以估计该 商场的利润额为 2.4 百万元.

19、解:设 MN 切圆 C 于 N,又圆的半径为 CN=1, 因为|CM|2=|MN|2+|CN|2=|MN|2+1, 所以|MN|= |CM| -1. 由已知|MN|=|MQ|+1,设 M(x,y),则
2

x2+y2-1=

x-

2

+y2+1,
2

两边平方得 2x-3=

x-

+y2,

? 3? ? 即 3x2-y2-8x+5=0? ?x≥2?.

20、解(I)解:设椭圆的焦距为 2c,由已知得

c2 5 ? ,又由 a 2 ? b2 ? c2 ,可得 2a ? 3b. 由 a2 9

| AB |? a2 ? b2 ? 13 ,从而 a ? 3, b ? 2 .
x2 y 2 所以,椭圆的方程为 ? ? 1. 9 4
(II)解:设点 P 的坐标为 ( x1 , y1 ) ,点 M 的坐标为 ( x2 , y2 ) ,由题意, x2 ? x1 ? 0 , 点 Q 的坐标为 (? x1 , ? y1 ). 由 △BPM 的面积是 △BPQ 面积的 2 倍,可得

|PM |=2|PQ| ,
从而 x2 ? x1 ? 2[ x1 ? (? x1 )] ,即 x2 ? 5x1 .

回家和规范化风格化

发顺丰的故事

易知直线 AB 的方程为 2 x ? 3 y ? 6 , 由方程组 ?

?2 x ? 3 y ? 6, 6 消去 y, 可得 x2 ? . 3k ? 2 ? y ? kx,

? x2 y 2 6 ? ? 由方程组 ? 9 可得 x1 ? .由 x2 ? 5x1 , 可得 9k 2 ? 4 ? 5(3k ? 2) , 4 ? 1, 消去 y , 2 9 k ? 4 ? y ? kx, ?
两边平方,整理得 18k 2 ? 25k ? 8 ? 0 ,解得 k ? ?

8 1 ,或 k ? ? . 9 2

当k ? ?

8 1 12 时, x2 ? ?9 ? 0 ,不合题意,舍去;当 k ? ? 时, x2 ? 12 , x1 ? ,符 9 2 5 1 . 2

合题意.

所以, k 的值为 ?

21. 解 (1)m ? 720 ? 0.25 ? 180 ,n ? 720 ? 0.15 ? 108 ,k ? 720 ? 180 ? 180 ? 108 ? 132 ? 72 ? 48 ; (2)由题意知,第一批次,第二批次,第三批次的人数分别是 360,240,120.
360 240 120 ?6 ? 3, ?6 ? 2, ?6 ?1, 720 720 720

所以第一批次,第二批次,第三批次被抽取的人数分别为 3,2,1. (3)第一批次选取的三个学生设为 A1 , A2 , A3 ,第二批次选取的学生为 B1 , B2 ,第三批次 选取的学生为 C ,则从这 6 名学员中随机选出两名学员的所有基本事件为:
A1 A2 , A1 A3 , A1B1 , A1B2 , A1C , A2 A3 , A2 B1 , A2 B2 , A2C , A3 B1 , A3 B2 , A3C , B1B2 , B1C , B2C 共 15 个,“两名同学至少有一个来自第一批次”的事件包括: A1 A2 , A1 A3 , A1B1 , A1B2 , A1C , A2 A3 , A2 B1 , A2 B2 , A2C , A3 B1 , A3 B2 , A3C 共 12 个,

所以“两名同学至少有一个来自第一批次”的概率 p ?

12 4 ? . 15 5

22、解:(1)因为椭圆 C 的焦 点为 F1 (? 3,0), F2 ( 3,0) , 可设椭圆 C 的方程为

1 x2 y 2 ? 2 ? 1(a ? b ? 0) .又点 ( 3, ) 在椭圆 C 上, 2 2 a b

1 ?3 ?a 2 ? 4, ? 2 ? 2 ? 1, ? 4b 所以 ? a ,解得 ? 2 ? ?a 2 ? b 2 ? 3, ?b ? 1, ?

因此,椭圆 C 的方程为

x2 ? y2 ? 1 . 4

因为圆 O 的直径为 F1 F2 ,所以其方程为 x2 ? y 2 ? 3 .

回家和规范化风格化

发顺丰的故事

(2)设直线 l 与圆 O 相切于 P( x0 , y0 )( x0 ? 0, y0 ? 0) ,则 x02 ? y02 ? 3 , 所以直线 l 的方程为 y ? ?
x0 x 3 ( x ? x0 ) ? y0 ,即 y ? ? 0 x ? . y0 y0 y0

? x2 2 ? ? y ? 1, ?4 由? 消去 y,得 ? y ? ? x0 x ? 3 , ? y0 y0 ?
(4 x02 ? y02 ) x2 ? 24x0 x ? 36 ? 4 y02 ? 0 .(*)

因为直线 l 与椭圆 C 有且只有一个公共点, 所以 ? ? (?24x0 )2 ? 4(4x02 ? y02 )(36 ? 4 y02 ) ? 48 y02 ( x02 ? 2) ? 0 . 因为 x0 , y0 ? 0 ,所以 x0 ? 2, y0 ? 1 . 因此,点 P 的坐标为 ( 2,1) .

回家和规范化风格化


相关文档

安徽省郎溪中学2018-2019学年高二数学上学期期中试题 文
【新】安徽省郎溪中学2018-2019学年高二数学上学期期中试题文
安徽省郎溪中学2018_2019学年高二数学上学期期中试题文20181206017
[小初高学习]安徽省郎溪中学2018-2019学年高二数学上学期期中试题 文
安徽省郎溪中学直升部2018_2019学年高二数学上学期期中试题201812060121
安徽省郎溪中学2018-2019学年高二数学上学期返校考试题文(含答案)
教育最新K12安徽省郎溪中学2018-2019学年高二数学上学期期中试题 文
【新】安徽省郎溪中学直升部2018-2019学年高二数学上学期期中试题
【新】安徽省郎溪中学2018-2019学年高二数学上学期返校考试题文
安徽省郎溪中学直升部2018-2019学年高二数学上学期期中试题
电脑版