数论与或然数学的发展_图文


数论与或然数学的发展
7.1数论

7.1.1素数分布
费马数Fn = +1, n = 0,1,2,… n = 0,1,2,3,4时,Fn是素数。人们进而 希望解决的问题是:是否存在着无限多个费马 素数。这也是一个至今未解决的难题

梅森数Mp = 2p-1,其中p为素数 已知道的梅森素数共34个,其中从p =521开始的素数Mp是 1952年以后用计算机陆续发现的 检验梅森数是否为素数的方法称为卢卡斯—莱默检验,例 如, 用卢卡斯—莱默检验判断M5是否为素数,因M5=25- 1=31,于是可作下述计算: U(0)=4, U(1)=(42-2)(mod31)=14(mod31)=14, U(2)=(142-2)(mod31)=194(mod31)=8, U(3)=(82-2)(mod31)=62(mod31)=0 由于U(3)= 0,M5必为素数。

利用因数表研究素数
拉恩于(1659年)发表了2.4万以内的因数表; 佩尔(1668年)扩大至10万; 费尔克尔(1776年)给出了40.8万以内的一切数 的因数表, 19世纪不少学者算出了1000万以内的所有数的 因数表,其中布拉格大学的库利克为此花费了20 年的业余时间

素数定理
若用π(n)表示不超过n的素数的 个数。当n→+时,= +。人们可以发现: 顺着自然数的序列,越往后素数的“密 度” π(n)/ n就变得越小

7.1.2 陈氏定理—数学皇冠上的明珠
哥德巴赫猜想(1742年) 每个偶数都是两个素数之和; 每个奇数都是三个素数之和

哥德巴赫猜想的研究进展
数学家哈代和李特尔伍德(英国,1923年)在广义黎曼猜想正确 的前提下,有条件地证明了每个充分大的奇数都是三个奇素 数之和以及几乎所有偶数都是两个奇素数之和。 维诺格拉多夫(1937年),无条件地证明了奇数哥德巴赫猜想, 即每个充分大的奇数都是三个奇素数之和 布朗(挪威1919年)证明了:每个大偶数都是两个素因子个数 均不超过9的整数之和(记为9 + 9,记号k + l表示大偶数分 解为不超过k个奇素数的积与不超过l个奇素数的积之和,下 同) 布赫夕塔布的4 + 4(1940)、瑞尼的l+c (c为一不确定大数) (1948)和库恩的a+b (a+b≤6)(1954); 王元的2+3(1957)和潘承洞的1+5(1962),到1965年,欧 洲数学家邦别里等三人差不多同时证明了1 + 3;1966年,中 国数学家陈景润宣布证明了1+2(1973年发表详细证明)

陈景润(1933~1996)简介

图7.1华罗庚(右)与陈景润(左)

7.1.3费马最后定理
费马猜想:对每个正整数n≥3,方程xn + yn = zn均没有正整数解(x, y, z)。 费马本人利用无限下降法证明了n=4时,费马猜 想成立。 1825年年仅20岁的德国数学家狄利克雷和年过 七旬的法国数学家勒让德各自独立地证明了n = 5的情形,1839年法国数学家拉梅证明了n = 7 的情形。

欧拉的整数分解的”定理”:
由a + b形式的数所形成的数系(记为,a,b为任 意整数)中,有唯一因子分解定理成立,即每一 个整数都可唯一地分解为这个数系中数的乘积。 后来才知道,对形如的数系,唯一因子分解定理 并不总是成立的,例如在数系中,6 = 3×2 = (1+)(1-),就有两种分解方式。事实上, 能保证唯一因子分解定理成立的数系只有9种

德国的数学家库默尔(1810~1893)利用理想数的 概念,证明了对于 100以内的所有素数,都能使 费马猜想成立。 志村-韦伊—谷山猜想——费马猜想的等价命题 怀尔斯的论文“模曲线和费马最后定理” (1994 年)——费马猜想终于成为定理,被称为费马大 定理或费马最后定理

7.1.4 让我们教猜想吧
费马猜想是只“会下金蛋的鹅”

1966年菲尔兹奖获得者、英国数学家阿蒂亚(1929~) 认为:“与其它自然科学的情况一样,数学中的一 些发现也要经过几个阶段才能实现,而形式证明只 是最后一步。最初阶段在于鉴别出一些重要的事实, 将它们排列成具体含义的模式,并由此提炼出看起 来很有道理的定律或公式。接着,人们用新的经验 事实来检验这种公式。只是到了此时,数学家们才 开始考虑证明问题。”

958年菲尔兹奖获得者、突变理论的创立者、 法国数学家托姆用半开玩笑的态度说:“严格 性是一个拉丁名词。我们会想起僵死 (rigormorits),即僵化的尸体。我要把数 学分为以下的三类:第一,以婴儿摇篮为标记。 这是‘活的数学’允许改变、澄清、完成证明、 反对、反驳。第二,以十字架为标记。这是坟 墓上的十字架。作者声明它已完全严格,具有 不朽的正确性。这类工作将构成‘坟墓数学’。 第三,以教堂为标记。这是外部的权威,由高 级教士组成,判断哪些工作已成为‘坟墓数 学’。”

推测数学家的成功范例之一是印度数学 家拉马努金(1887~1920) 波利亚认为,在数学教育中,“证明与 猜想,这两类推理即论证的与合情的” 都必须教给学生,“在有些情况下教猜 想比教证明更为重要。”因此,波利亚 强烈的呼吁:“让我们教猜想吧!”

7.2 概率论
7.2.1 点的问题及数学期望
?概率论源于15世纪下半叶的博奕问题的研究。 ?点的问题(1654年)

在两个技巧相当的赌徒A和B之间进 行赌博,A获得2点或2点以上时为 获胜者,B则需获得3点或3点以上 时为获胜者。如果通过四次投骰子 后就停止赌博,问此时如何分配赌 金。

帕斯卡的解法
帕斯卡利用自己对杨辉三角(见第二章)的研 究这样解决这个问题:如果用表示0出现四次 的情况数,表示0出现三次的情况数等等。于 是上述点问题的解是: (++):(+)=(1+4+6):(4+1)=11: 5。 在一般情况下,若A需要至少m点取胜,B需要 至少n点取胜,则可选择扬辉三角的第m+n行, 求出该行中的前n个元素和α与后m个元素和β, 并按α:β之比来分配赌金。

费马的解法
分别用0、1代表A、B在一次投骰子时成 为获胜者,然后计算0、1两种字母在每 次取4个的16种排列: 0000 0001 0110 1101 1000 1100 0101 1011 0100 1010 0011 0111 0010 1001 1110 1111 在这16种排列中,0至少出现2次的情况 有11种,而1至少出现3次的情况有5种。 由此费马认为,赌金应按11:5来分配。

数学期望”概念的的产生(荷兰数学家、物 理学家惠更斯,1657年)
赌局开始之前,对每一个赌徒来说就已 有了关于结局的一种“期望”,如果共 有N种等可能的结果,其中,n种结果使 他获得赌金为a,其余结果使他获赌金 为b,则他的期望为

7.2.2 概率理论的发展

随机现象 随机现象从个体上看,似乎并没有什么规律 可言,但当它们大量出现的时候,在总体上 就会呈现出某种规律,即大数规律。 伯努利大数定理(1713年): 若p是出现单独一次事件的概率,q是不出现 该事件的概率,则在n次试验中该事件至少出 现m次的概率,等于二项式(p+q)n的展开式 中从pn项到包括pmqn-m为止的各项之和

棣莫弗—拉普拉斯定理。又称为“中心极限定 理” 拉普拉斯(1812)明确表述了概率论的基本定 义和定理。给出了概率的古典定义,广泛应用了分析 工具处理概率的问题,将以往零散的研究成果系统化, 并将概率论的研究方法从组合技巧发展到分析方法, 使概率论研究进入了一个新的发展阶段。

19世纪下半叶,俄国数学家切比雪夫 (1821~1894)与他的学生马尔可夫 (1856~1922)利用极限理论研究概率论,取 得了突出的成就。建立了关于独立随机变量序 列的大数定律,使贝努利和泊松的大数定律成 为其特例。切比雪夫还将棣莫弗—拉普拉斯极 限定理推广为更一般的中心极限定理。“马尔 可夫链”则是概率论中的重要理论 概率论在整个18与19世纪成了热门学科,

7.2.3 概率论的公理化
贝特朗(法国,1899年)提出的概率论 悖论,将矛头直指概率论基本概念

? 20 世纪初,由勒贝格创立的测度论

和积分论为概率的研究提供了新的手段 ? 柯尔莫戈洛夫(前苏联,1933年)建 立概率论的公理化体系

7.3 数理统计

数理统计是通过样本数据的分析预测整体 状态的数学理论与方法。该分支研究的数 据带有随机性,因此,它与概率研究有着 密切的联系 数理统计则起源于17至18世纪地质与生物 进化统计的研究,在20世纪形成了用数学 方法研究统计规律的专业分支,是形成较 晚的数学分支

英国数学家、生物学家皮尔逊(1857~1936)
是使用数学方法系统研究生物统计 的第一人。他潜心研究数据的分布理论, 并先后提出标准差、正态曲线、概率、 相关等一系列数理统计学名词和概念。 致力于大样本的研究,在第一次世界大 战期间,皮尔逊还用统计方法处理过大 量的与战争有关的特殊计算。

英国数学家、化学家戈塞特(1876~1937)

他在酿酒公司担任酿造化学技师期间, 开创小样本统计理论, 1908年,提出 了t分布函数、t检验,此举成为统计推 断理论发展史上的里程碑。

美国数学家弗歇(1890~1962)
他是另一个数理统计的奠基人。他从事数理统计在 农业科学和遗传学中应用的研究。开创了试验设计、 方差分析,并确立了统计推断的基本方法。20世纪 30—50年代,弗歇成为数理统计学研究的中心人物 并建立了自己的学派。他所研究的成果,实用价值 却很大。在他的手里,数理统计学脱离生物计量学 的范围获得独立。他所提出的z分布由他的学生改 进后被称为F分布(用他的名字Fisher的第一个字 母命名),现在广泛使用的方差分析、实验设计、 参数估计

?1928年原籍波兰的美国数学家奈曼 (1894~1981)和K· 皮尔逊之子E· 皮尔逊建立了

严格的假设检验理论。 ?1946年瑞典数学家克拉梅尔出版了《统计数 学方法》,这部书收集了半个多世纪以来的数 理统计研究成果,它标志着数理统计作为一门 独立的数学分支正式确立。 ?第二次世界大战中,由于军事的需要,数学 家沃尔德(1902~1950)创立了“序贯分析 法”,许多数理分支,如参数估计,都受到这 种理论的影响而得到发展。 ?1940年代之后,数理统计的学派开始多元化, 美国逐渐成为又一个数理统计学的研究中心。


相关文档

数学史 第七章+数论与或然数学的发展
数学史课件:第七章 数论与或然数学的发展
高二数学数论与或然数学的发展
高考数学专题复习-数列与简易数论问题的研究与拓展
【7A文】初中数学联赛组合与数论专题
高二数学数论与或然数学的发展 共34页
高中数学史课件:第七章 数论与或然数学的发展课件人教版选修三.ppt
数论和组合数学知识
七年级数学竞赛讲座数论的方法与技巧(含答案详解)
电脑版