江苏专用2018版高考数学大一轮复习第十三章推理与证明算法复数13.5复数课件理_图文


§13.5 复 数

内容索引

基础知识 题型分类

自主学习 深度剖析

课时作业

基础知识

自主学习

知识梳理

1.复数的有关概念 (1)定义:形如a+bi(a,b∈R)的数叫做复数,其中a叫做复数z的 实部,

b叫做复数z的虚部 .(i为虚数单位) (2)分类: 满足条件(a,b为实数)
b=0 a+bi为实数?________ 复数的分类 a+bi为虚数?_____ b≠0

a=0且b≠0 a+bi为纯虚数?____________

(3)复数相等:a+bi=c+di? a=c且b=d (a,b,c,d∈R). (4)共轭复数:a+bi与c+di共轭? a=c,b=-d (a,b,c,d∈R). → 的模叫做复数z=a+bi的模,记作 |a+bi| 或 |z| , (5)模:向量 OZ 2 2 a + b 即|z|=|a+bi|=_________(a,b∈R). 2.复数的几何意义

→ = (a , b)(a , 复数z=a+bi与复平面内的点 Z(a,b) 及 平 面 向 量 OZ
b∈R)是一一对应关系.

3.复数的运算 (1)运算法则:设z1=a+bi,z2=c+di,a,b,c,d∈R
(a±c)+(b ±d)i

(ac-bd)+(bc ±ad)i

ac ? bd bc ? ad ? 2 2 2 c ?d c ? d2

(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.

如图给出的平行四边形OZ1ZZ2可以直观地反映出复数加减法的几何意义, → → → → → → OZ1+OZ2 ,Z1Z2= OZ2-OZ1 . 即 OZ=

思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)

(1)方程x2+x+1=0没有解.( × )
(2)复数z=a+bi(a,b∈R)中,虚部为bi.( × )

(3)复数中有相等复数的概念,因此复数可以比较大小.( × )
(4)原点是实轴与虚轴的交点.( √ )

(5) 复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复
数对应的向量的模.( √ )

考点自测

1.(2016· 全国乙卷改编)设(1+2i)(a+i)的实部与虚部相等,其中a为实 -3 答案 数,则a=______.
解析

∵(1+2i)(a+i)=a-2+(2a+1)i, ∴a-2=2a+1,解得a=-3.

2.(2016· 泰州模拟)已知复数z满足(3+i)z=10i(i为虚数单位 ),则复数z 1-3i 答案 的共轭复数是_______.
解析

10i 10i?3-i? 复数 z= = 10 =1+3i, 3+i
则复数 z 的共轭复数是 z =1-3i.

3.(2016· 南京一模)设i是虚数单位,若z=cos θ+isin θ,且其对应的点位 二 象限. 于复平面内的第二象限,则θ位于第____
答案 解析

∵z=cos θ+isin θ对应的点的坐标为(cos θ,sin θ),且点(cos θ,sin θ)
位于第二象限,
? ?cos θ<0, ∴? ∴θ 为第二象限角. ? ?sin θ>0,

1 4.i2 011+i2 012+i2 013+i2 014+i2 015+i2 016+i2 017=___.
答案 解析

原式=i3+i4+i1+i2+i3+i4+i=1.

→ → 5.(教材改编)在复平面内,向量AB对应的复数是 2+i,向量CB对应的复数 → -3-4i 是-1-3i,则向量CA对应的复数是_________.
答案 解析

→ → → CA=CB+BA=-1-3i+(-2-i)=-3-4i.

题型分类

深度剖析

题型一 复数的概念 例1 (1)(2016· 无锡模拟 ) 若复数 z = (1 - i)(m + 2i)(i 为虚数单位 ) 是纯
答案 解析

-2 虚数,则实数m的值为______.

z=m-mi+2i+2=(m+2)+(2-m)i. ∵z为纯虚数,∴m=-2.

(2)若z1 =(m2 + m+ 1)+(m2 + m-4)i(m∈R),z2 =3-2i ,则 “m=1” 充分不必要 条件. 是“z1=z2”的____________
答案 解析

2 ? m ? +m+1=3, 由? 2 解得 m=-2 或 m=1, ? ?m +m-4=-2,

所以“m=1”是“z1=z2”的充分不必要条件.

1 (3)(2016· 天津)i是虚数单位,复数z满足(1+i)z=2,则z的实部为____.
答案 解析

2 ∵(1+i)z=2,∴z= =1-i,∴其实部为 1. 1+i

引申探究
将本例(3)中的条件“(1+i)z=2”改为“(1+i)3z=2”,求z的实部.
解答

2 2 z= 3= ?1+i? -2+2i 1 1 =-2-2i, 1 ∴z 的实部为-2.

思维升华
解决复数概念问题的方法及注意事项 (1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足 的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程 (不等式)组即可. (2)解题时一定要先看复数是否为 a+bi(a,b∈R)的形式,以确定实部和 虚部.

跟踪训练1 (1)(2016· 镇江模拟)若复数z满足(3-4i)z=|4+3i|,则z的虚 4 答案 解析 部为____. 5
5?3+4i? 3 4 5 ∵|4+3i|= 4 +3 =5,∴z= = 25 =5+5i, 3-4i 4 虚部为5.
2 2

(2)(2016· 苏北四市调研二)已知复数z满足z2=-4,若z的虚部大于0,则 2i 答案 z=___.
解析

设z=a+bi(a,b∈R,b>0), 则z2=a2-b2+2abi=-4,

因此a=0,-b2=-4,b=±2,
又b>0,∴b=2,∴z=2i.

题型二 复数的运算 命题点1 复数的乘法运算 2i 例2 (1)(2016· 四川改编)设i为虚数单位,则复数(1+i)2=___.
答案 解析

(1+i)2=12+i2+2i=1-1+2i=2i.

(2)(2016· 全国乙卷改编 ) 设 (1 + i)x = 1 + yi ,其中 x , y 是实数,则 |x + yi|

2 =____.

答案

解析

? ? ?x=1, ?x=1, 由(1+i)x=1+yi,得 x+xi=1+yi?? ?? ? ? ?x=y ?y=1.

所以|x+yi|= x +y = 2.
2 2

(3)(2015· 课标全国 Ⅱ 改编 ) 若 a 为实数,且 (2 + ai)(a - 2i) =-4i ,则 a =
答案 0 ___. 解析

因为a为实数,且(2+ai)(a-2i)=4a+(a2-4)i=-4i, 得4a=0且a2-4=-4,解得a=0.

命题点2 复数的除法运算

4i i 例3 (1)(2016· 全国丙卷改编)若z=1+2i,则= _____. 答案 z z -1
4i z=1+2i,z z =5, =i. z z -1

解析

1+2i i 答案 (2)(2016· 北京改编)复数 =____. 2 -i

解析

1+2i ?1+2i??2+i? 5i = = 5 =i. 2-i ?2-i??2+i?

1+i 6 2+ 3i -1+i 答案 (3)( )+ =________. 1-i 3- 2i
?1+i?2 6 ? 2+ 3i?? 3+ 2i? 原式=[ 2 ] + ? 3?2+? 2?2
6+2i+3i- 6 =i + =- 1 + i. 5
6

解析

命题点3 复数的综合运算
例4 (1)(2016· 山东改编)若复数z满足2z+ z =3-2i,其中i为虚数单位,
解析

1-2i 则z=________. 答案 设z=a+bi(a,b∈R),

则 z =a-bi,∴2(a+bi)+(a-bi)=3-2i,整理得 3a+bi=3-2i,
? ? ?3a=3, ?a=1, ∴? 解得? ∴z=1-2i. ? ? ?b=-2, ?b=-2,

4 3 z (2)(2016· 全国丙卷改编)若 z=4+3i,则|z|=______. 5-5i
答案 解析

z 4 3 z =4-3i,|z|=5,|z|=5-5i.

思维升华
复数代数形式运算问题的常见类型及解题策略 (1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数 单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可. (2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题 中要注意把i的幂写成最简形式. (3)复数的运算与复数概念的综合题.先利用复数的运算法则化简,一 般化为a+bi(a,b∈R)的形式,再结合相关定义解答.

(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简, 一般化为a+bi(a,b∈R)的形式,再结合复数的几何意义解答. (5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注 意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.

z2 跟踪训练2 (1)(2016· 常州模拟)若i为虚数单位,复数z=1+2i,则 |z|2 3 4 -5+5i =________.
答案 解析

因为z=1+2i,所以z2=(1+2i)2=-3+4i,
z2 -3+4i 3 4 |z|= 5,所以|z|2= 5 =-5+5i.

?1+i? ? ?2 017 i (2)? =____. ? ?1-i?

答案

解析

1+i 2 017 ?1+i?2 2 017 2 017 ( ) =[ ] =i =i. 1-i ?1-i??1+i?

2 2 -2 3+i ? 2 ?2 017 +( 2 +1)i ? ? 2 (3) + 1-i =____________. 1+2 3i ? ?
-2 3+i 2 2 017 +( ) 1+2 3i 1-i
i?1+2 3i? 2 2 2 1 008 = +( )[( )] 1+2 3i 1-i 1-i

答案

解析

=i+i

1 008

2 2 2 ·2 (1+i)= 2 +( 2 +1)i.

题型三 复数的几何意义 例5
答案

(1)△ABC的三个顶点对应的复数分别为 z1,z2,z3,若复数z满足
解析

外心 |z-z1|=|z-z2|=|z-z3|,则z对应的点为△ABC的______.

由几何意义知,复数z对应的点到△ABC三个顶点距离都相等,z对应
的点是△ABC的外心.

(2)如图所示,平行四边形OABC,顶点O,A,C分别表示0,3+2i,
-2+4i,试求:
→ → ①AO,BC所表示的复数; 解答
→ → → AO=-OA,∴AO所表示的复数为-3-2i.
→ → → ∵BC=AO,∴BC所表示的复数为-3-2i.

→ ②对角线CA所表示的复数; 解答
→ → → → CA=OA-OC,∴CA所表示的复数为

(3+2i)-(-2+4i)=5-2i.

③B点对应的复数.

解答

→ → → → → OB=OA+AB=OA+OC,

→ ∴OB所表示的复数为(3+2i)+(-2+4i)=1+6i,

即B点对应的复数为1+6i.

思维升华

因为复平面内的点、向量及向量对应的复数是一一对应的,要求某

个向量对应的复数时,只要找出所求向量的始点和终点,或者用向
量相等直接给出结论即可.

z 跟踪训练3 已知z是复数,z+2i,2-i 均为实数(i为虚数单位),且复数
(z+ai)2在复平面内对应的点在第一象限,求实数a的取值范围.
解答

思想与方法系列26

解决复数问题的实数化思想

典例 (14分)已知x,y为共轭复数,且(x+y)2-3xyi=4-6i,求x,y.
思想方法指导 规范解答

(1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最 基本的思想方法. (2) 本题求解的关键是先把 x、 y用复数的基本形式表示出来,再用待 定系数法求解,这是常用的数学方法. (3)本题的易错原因为想不到利用待定系数法,或不能将复数问题转 化为实数方程求解.

课时作业

1.(2016· 南通模拟)已知a>0,b>0,且(1+ai)(b+i)=5i(i是虚数单位),

4 则a+b=____. 答案

解析

由题意得(1+ai)(b+i)=(b-a)+(1+ab)i=5i,
? ?b-a=0, 则? 又 a>0,b>0,所以 a=b=2,则 a+b=4. ? ?1+ab=5,

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

2.(2016· 苏北联考)如果复数1,a+i,3+a2i(a∈R)成等比数列,那么a的

2 值为___. 答案

解析

由题意知,(a+i)2=1×(3+a2i),

即a2-1+2ai=3+a2i,
2 ? a ? -1=3, ∴? 2 ? 2 a = a , ?

解得 a=2.

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

z 3.若 i 为虚数单位,图中复平面内点 Z 表示复数 z,则表示复数 的点是 1 +i

H 答案 _____.

解析

由题图知复数z=3+i,
3+i ?3+i??1-i? 4-2i z ∴ = = = 2 =2-i. 1+i 1+i ?1+i??1-i? z ∴表示复数 的点为 H. 1+i

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

4.(2017· 南昌月考) z 是 z 的共轭复数,若 z+ z =2,(z- z )i=2(i 为虚
答案 1-i 数单位),则 z=_____. 解析

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

5.(2016· 新乡、许昌、平顶山调研)复数z1,z2满足z1=m+(4-m2)i,z2 =2cos θ+(λ+3sin θ)i(m,λ,θ∈R),并且z1=z2,则λ的取值范围是
? ? 9 ? ? ,7? ?- 16 ? ? _________.

答案

解析

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

(1, 5) 6.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是_______.
答案 解析

由于复数z的实部为a,虚部为1,且0<a<2,
所以由|z|= 1+a ,得 1<|z|< 5.
2

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

2+i *7.若 i 为虚数单位,已知 a+bi= (a,b∈R),则点(a,b)与圆 x2 1-i

点在圆外 +y2=2 的位置关系为__________.

答案

解析

2+i ?2+i??1+i? 1 3 ∵a+bi= = = + i , 2 2 2 1-i ? ?a=1, ? 2 5 2 2 ? ∴ 则 a +b =2>2, 3 ? b=2, ? ?

∴点(a,b)在圆x2+y2=2外.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8.复数(3 + i)m - (2 + i) 对应的点在第三象限内,则实数 m 的取值范围是 2 (-∞,3) 答案 解析 __________. z=(3m-2)+(m-1)i,其对应点(3m-2,m-1)在第三象限内, 故3m-2<0且m-1<0,
2 ∴m<3.

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

9. 已知集合 M = {1 , m,3 + (m2 - 5m - 6)i} , N = { - 1,3} ,若 M∩N = 3或6 {3},则实数m的值为______. 答案 ∵M∩N={3},∴3∈M且-1?M, ∴m≠-1,3+(m2-5m-6)i=3或m=3, ∴m2-5m-6=0且m≠-1或m=3,
解析

解得m=6或m=3,经检验符合题意.

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

y 3 10.已知复数 z=x+yi,且|z-2|= 3,则x的最大值为_____.
答案 解析

∵|z-2|= ?x-2?2+y2= 3,

∴(x-2)2+y2=3.
?y? ? ? 由图可知?x?max= ? ?

3 1 = 3.

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

11.若 1+ 2i 是关于 x 的实系数方程 x2+bx+c=0 的一个复数根,则 b

-2 ,c=_____. 3 =____

答案

解析

∵实系数一元二次方程 x2+bx+c=0 的一个虚根为 1+ 2i,
∴其共轭复数 1- 2i 也是方程的根.

由根与系数的关系知,
? ??1+ 2i?+?1- 2i?=-b, ? ? ??1+ 2i??1- 2i?=c,

∴b=-2,c=3.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12.给出下列命题: ①若z∈C,则z2≥0; ②若a,b∈R,且a>b,则a+i>b+i; ③若a∈R,则(a+1)i是纯虚数; ④若z=-i,则z3+1在复平面内对应的点位于第一象限. ④ 填上所有正确命题的序号) 答案 其中正确的命题是____.(
解析

由复数的概念及性质知,①错误;②错误;
若a=-1,则(a+1)i=0,③错误;

z3+1=(-i)3+1=i+1,④正确.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 2 2 13.复数 z1= +(10-a )i,z2= +(2a-5)i,若 z 1+z2 是实数,求实 a+5 1-a 数 a 的值.
解答

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

?-1+i??2+i? 14.计算:(1) ; 解答 i3
?-1+i??2+i? -3+i = =- 1 - 3i. 3 i -i ?1+2i? +3?1-i? (2) ; 2+i
2

解答

?1+2i?2+3?1-i? -3+4i+3-3i = 2+i 2+i i?2-i? 1 2 i = = 5 =5+5i. 2 +i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1-i 1 +i (3) 2+ 2; ?1+i? ?1-i?

解答

1-i 1+i 1-i 1+i + 2+ 2= 2i ?1+i? ?1-i? -2i 1+i -1+i = + 2 =-1. -2

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

1- 3i (4) 2. ? 3+i?

解答

1- 3i ? 3+i??-i? -i ?-i?? 3-i? = 2= 2 = 4 ? 3+i? ? 3+i? 3+i 1 3 =-4- 4 i.

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

*15.若虚数z同时满足下列两个条件:
5 ①z+ 是实数; z ②z+3的实部与虚部互为相反数.

这样的虚数是否存在?若存在,求出z;若不存在,请说明理由.
解答

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15


相关文档

(江苏专用)2018版高考数学大一轮复习第十三章推理与证明、算法、复数13.5复数课件理苏教版
江苏专用2018版高考数学大一轮复习第十三章推理与证明算法复数13.5复数教师用书理苏教版
(江苏专用)2018版高考数学大一轮复习第十三章推理与证明、算法、复数13.3数学归纳法课件理苏教版
江苏专用2018版高考数学大一轮复习第十三章推理与证明算法复数13.2直接证明与间接证明课件理苏教版
(江苏专用)2018版高考数学大一轮复习第十三章推理与证明、算法、复数13.2直接证明与间接证明课件理苏教版
江苏专用2018版高考数学大一轮复习第十三章推理与证明算法复数13.1合情推理与演绎推理课件理苏教版
江苏专用2018版高考数学大一轮复习第十三章推理与证明算法复数13.5复数教师用书理
江苏专用2018版高考数学大一轮复习第十三章推理与证明算法复数13.3数学归纳法课件理
江苏专用2018版高考数学大一轮复习第十三章推理与证明算法复数13.3数学归纳法教师用书理
江苏专用2018版高考数学大一轮复习第十三章推理与证明算法复数13.2直接证明与间接证明课件理
电脑版