【K12教育学习资料】2018_2019学年高中数学活页作业16指数函数的图象及性质新人教A版必修1


教育是最好的老师,小学初中高中资料汇集 活页作业(十六) 指数函数的图象及性质 (时间:45 分钟 满分:100 分) 一、选择题(每小题 5 分,共 25 分) 1.下列一定是指数函数的是( A.形如 y=a 的函数 B.y=x (a>0,且 a≠1) C.y=(|a|+2) D.y=(a-2)a x -x ) x a 解析:∵y=(|a|+2) =? -x ? 1 ?x,|a|+2≥2, ? ?|a|+2? 1 1 ∴0< ≤ ,符合指数函数定义. |a|+2 2 答案:C 2.已知对不同的 a 值,函数 f(x)=2+a 的坐标是( A.(0,3) C.(1,3) ) B.(0,2) D.(1,2) x-1 (a>0,且 a≠1)的图象恒过定点 P,则 P 点 解析:令 x-1=0,得 x=1,此时 y=2+1=3, ∴图象恒过定点(1,3). 答案:C 3.定义运算:a?b=? ? ?a,a≤b, ?b,a>b, ? 则函数 f(x)=1?2 的图象大致为( x ) ? ?1,x≥0, x 解析:由题意,f(x)=1?2 =? x ?2 ,x<0. ? 故选 A. 答案:A 4.函数 f(x)= A.(-∞,0] C.(-∞,0) x 1-2 的定义域是( x ) B.[0,+∞) D.(-∞,+∞) x 解析:要使函数有意义,则 1-2 ≥0,即 2 ≤1, ∴x≤0. 专注专业学习坚持不懈勇攀高峰 1 教育是最好的老师,小学初中高中资料汇集 答案:A 5.当 x∈[-1,1]时,函数 f(x)=3 -2 的值域是( x ) ? 5? A.?1, ? ? 3? ? 5 ? C.?- ,1? ? 3 ? x B.[-1,1] D.[0,1] 解析:因为 f(x)=3 -2 是 x∈[-1,1]上的增函数, 5 -1 所以 3 -2≤f(x) ≤3-2,即- ≤f(x)≤1. 3 答案:C 二、填空题(每小题 5 分,共 15 分) 6.若函数 f(x)=(a -2a+2)(a+1) 是指数函数,则 a=________. 2 x a -2a+2=1, ? ? 解析:由指数函数的定义得?a+1>0, ? ?a+1≠1. 答案:1 2 解得 a=1. 7. 已知函数 f(x)=a +b(a>0, a≠1)的定义域和值域都是[-1,0], 则 a+b=______. ?f ? 解析:当 0<a<1 时,f(x)为减函数,∴? ?f ? ? ?f 3 =- ;当 a>1 时,f(x)为增函数,∴? 2 ?f ? x -1 =0 0 =-1. 1 ? ?a= , 解得? 2 ? ?b=-2. ∴a+b -1 =-1, 0 =0, 不合题意,舍去. 3 答案:- 2 8.关于下列说法: (1)若函数 y=2 的定义域是{x|x≤0},则它的值域是{y|y≤1}. ? ? ? 1 1 (2)若函数 y= 的定义域是{x|x≥2},则它的值域是?y?y≤ 2 x ? ? ? x x ? ? ?. ? ? (3)若函数 y=2 的值域是{y|0<y≤4},则它的定义域一定是{x|0<x≤2}. 其中不正确的说法的序号是______________. 解析:(1)不正确.由 x≤0 得 0<2 ≤2 =1,值域是{y|0<y≤1}. ? ? ? 1 1 1 (2)不正确.由 x≥2 得 0< ≤ ,值域是?y?0<y≤ 2 x 2 ? ? ? x 2 x 0 ? ? ?. ? ? x (3)不正确.由 2 ≤4=2 ,得 x≤2,所以若函数 y=2 的值域是{y|0<y≤4},则它的 定义域一定是{x|x≤2}. 专注专业学习坚持不懈勇攀高峰 2 教育是最好的老师,小学初中高中资料汇集 答案:(1)(2)(3) 三、解答题(每小题 10 分,共 20 分) 9.已知函数 f(x)=a (1)求 a 的值; (2)求函数 y=f(x)(x≥0)的值域. x-1 ? 1? (x≥0)的图象经过点?2, ?(其中 a>0,且 a≠1). ? 2? ? 1? 解:(1)函数图象过点?2, ?, ? 2? 所以 a 2-1 1 1 = ,则 a= . 2 2 ?1?x-1 (2)f(x)=? ? (x≥0), ?2? 由 x≥0 得,x-1≥-1, ?1?x-1 ?1?-1 于是 0<? ? ≤? ? =2. ?2? ?2? 所以函数的值域为(0,2]. 10.已知函数 f(x)=2 +a×2 +1,x∈R. (1)若 a=0,画出此时函数的图象.(不列表) (2)若 a<0,判断函数 f(x)在定义域内的单调性,并加以证明. 解:(1)当 a=0 时,f(x)=2 +1,其图象如图所示: x x -x (2)当 a<0 时,函数 f(x)在定义域上是增函数.证明如下:任取 x1,x2∈R,且 x1<x2, f(x1)-f(x2)=2x1+ =2 -2 + x1 x2 x1 x2 a x1 2 x2 ? ? x1 x2 +1-?2 + x2+1?=2 -2 + x1- x2 2 2 2 ? ? x2 a a a a 2x2-2x1 2 + 2 2 2 x1+x2 x1 =(2 -2 )?1- x1 ? ? a x1+x2 x1+x2 ? ? ? . x1 x2 = -2 x2 -a ∵y=2 是 R 上的增函数,∴2 <2 . 即 2 -2 <0, 又2 x1+x2 x1 x2 x >0,a<0,∴2 x1+x2 -a>0. 专注专业学习坚持不懈勇攀高峰 3 教育是最好的老师,小学初中高中资料汇集 ∴f(x1)-f(x2)<0.∴f(x1)<f(x2). ∴f(x)在定义域上是增函数. 一、选择题(每小题 5 分,共 10 分) 1.函数 f(x)=a x-b 的

相关文档

【K12教育学习资料】2018_2019学年高中数学活页作业17指数函数及其性质的应用新人教A版必修
【K12教育学习资料】[学习]2018-2019学年高中数学 习题课4 指数函数练习 新人教A版必修
【K12教育学习资料】[学习]2018-2019学年高中数学 第二章 函数 第5节 指数与指数函数课
【K12教育学习资料】[学习]2018-2019学年高中数学 第二章 函数 第5节 指数与指数函数课
【K12教育学习资料】[学习]2018-2019学年高中数学 第三章 指数函数和对数函数 3.1 正
【K12教育学习资料】[学习]2018-2019学年高中数学 第三章 指数函数和对数函数 3.1 正
【K12教育学习资料】[学习]2018-2019学年高中数学 第三章 指数函数和对数函数 3.1 正
【K12教育学习资料】[学习]2018-2019学年高中数学 第三章 指数函数和对数函数 3.5 对
【K12教育学习资料】[学习]2018-2019学年高中数学 第三章 指数函数和对数函数 3.2 指
【K12教育学习资料】[学习]2018-2019学年高中数学 第三章 指数函数和对数函数 3.2 指
电脑版